Port

Type:enum
Range:Origin
Default:Origin
Appearance:simple

, or

Type:int
Range:[1, 2147483647]

A polygon has a point-Port (globally oriented) at its vertices and tangential ports at the midpoints of its segments. Further, a polygon as the default port Origin which coincides with the origin of the global coordinate-system.

The port ordering is as follows, where \pvec{p}_i^{(j)} denotes the i-th point of the j-th polygonal chain with N^{(j)} points and J is the number of polygonal chains:

Ports of a generalized polygon
Number Name Position Type Coordinate System
1   p_1^{1)} point x'=[1, 0], y'=[0, 1]
  point
N^{(1)}   p_N^{(1)} point x'=[1, 0], y'=[0, 1]
N^{(1)}+1   (p_1^{(1)}+p_2^{(1)})/2 tangential x'=(p_2^{(1)}-p_1^{(1)})/|p_2^{(1)}-p_1^{(1)}|, y'=R_{90} \cdot x'
    tangential
2N^{(1)} (p_{N^{(1)}}^{(1)}+p_1^{(1)})/2 tangential x'=(p_1^{(1)}-p_{N^{(1)}}^{(1)})/|p_1^{(1)}-p_{N^{(1)}}^{(2)}|, y'=R_{90} \cdot x'
2 \sum_{j=1}^{J-1} N^{(j)}   p_1^{1)} point x'=[1, 0], y'=[0, 1]
  point
2 \sum_{j=1}^{J-1} N^{(j)}+N^{(J)}   p_N^{(j)} point x'=[1, 0], y'=[0, 1]
2 \sum_{j=1}^{J-1} N^{(j)}+N^{(J)}+1   (p_1^{(J)}+p_2^{(J)})/2 tangential x'=(p_2^{(J)}-p_1^{(J)})/|p_2^{(J)}-p_1^{(J)}|, y'=R_{90} \cdot x'
    tangential
2 \sum_{j=1}^{J} N^{(j)} (p_{N^{(J)}}^{(J)}+p_1^{(J)})/2 tangential x'=(p_1^{(J)}-p_{N^{(J)}}^{(J)})/|p_1^{(J)}-p_{N^{(J)}}^{(2)}|, y'=R_{90} \cdot x'
2 \sum_{j=1}^{J} N^{(j)}+1 Origin [0, 0] point x'=[1, 0], y'=[0, 1]